Momen inersia dapat dimiliki oleh setiap benda, manusiapun memiliki momen inersia tertentu. Besarnya momen inersia bergantung pada berbagai bentuk benda, pusat rotasi, jari-jar rotasi, dan massa benda. Pada penentuan momen inersia bentuk tertentu seperti bola silinder pejal, plat segi empat, atau bentuk yang lain cenderung lebih mudah dari pada momen inersia benda yang memiliki bentuk yang tidak beraturan. Bentuk yang tidak beraturan ini tidak bias dihitung jari-jarinya, sehingga terdapat istilah jari-jari girasi. Jari-jari girasi ini adalah jari-jari dari benda yang bentuknya tak beraturan dihitung dari pusat rotasinya. Jari-jari girasi inilah yang membantu pada proses perhitungan jari momen inersia benda, tetapi pada setiap sisi benda yang tidak beraturan ini yang menyebabkan momen inersia yang tidak beraturan sulit untuk dihitung.(Giancolli, 1989, hal 226)
Benda tegar yang berotasi terdiri dari massa yang bergerak, sehingga memiliki energi kinetik. Hal ini dapat dinyatakan energi kinetik ini dalam bentuk kecepaian sudut benda dan sebuah besaran baru yang disehut momen inersia. Untuk mengembangkan hubungan ini, misalkan sebuah benda yang lerdiri dari sejumlah
besar partikel dengan massa m1, m2, m3,.....pada jarak r1,r2,r3.....dari sumbu putar. Apabila diberi nama masing-masing partikel dengan subskrip i, massa partikel ke-i adalah mi, dan jaraknya dari sumbu pular adalah ri. Partikel tidak harus seluruhnya berada pada satu bidang, sehingga dapat ditunjukkan bahwa rt adalah jarak tegak lurus dari sumbu terhadap partikel ke-i dinyatakan sebagai.
Ketika benda tegar berotasi di sekitar sebuah sumbu tetap, laju Vi dari partikel ke-i diberikan oleh Persamaan v, = ri ω, di mana ω adalah laju sudut benda. Setiap partikel memiliki nilai r yang bcrbeda. Tetapi ω yang sama untuk semua (kalau tidak. benda tidak akan tegar). Energi kinelik uniuk partikel ke-i dinyatakan sebagai
Benda tegar yang berotasi terdiri dari massa yang bergerak, sehingga memiliki energi kinetik. Hal ini dapat dinyatakan energi kinetik ini dalam bentuk kecepaian sudut benda dan sebuah besaran baru yang disehut momen inersia. Untuk mengembangkan hubungan ini, misalkan sebuah benda yang lerdiri dari sejumlah
besar partikel dengan massa m1, m2, m3,.....pada jarak r1,r2,r3.....dari sumbu putar. Apabila diberi nama masing-masing partikel dengan subskrip i, massa partikel ke-i adalah mi, dan jaraknya dari sumbu pular adalah ri. Partikel tidak harus seluruhnya berada pada satu bidang, sehingga dapat ditunjukkan bahwa rt adalah jarak tegak lurus dari sumbu terhadap partikel ke-i dinyatakan sebagai.
Ketika benda tegar berotasi di sekitar sebuah sumbu tetap, laju Vi dari partikel ke-i diberikan oleh Persamaan v, = ri ω, di mana ω adalah laju sudut benda. Setiap partikel memiliki nilai r yang bcrbeda. Tetapi ω yang sama untuk semua (kalau tidak. benda tidak akan tegar). Energi kinelik uniuk partikel ke-i dinyatakan sebagai
Energi kinetik total benda adalah jumlah energi kinetik dari semua partikelnya adalah
Dengan mengeluarkan faktor ω^2/2 dari persamaan, didapat :
Besaran di dalam kurung , di dapat dengan mengalikan massa masing-masing partikel dengan kuadrat jarakn ya dari sumbu putar dan menambahkan hasilnya, dinyatakan dengan I dan disebut sebagai momen inersia. Sehingga momen inersia dapat di nyatakan sebagai
(zemansky.1991, 293-294)
Dalam persamaan ini, jarak ri adalah jarak dari partikel ke-i ke sumbu rotasi. Biasanya, jarak ini tidak sama dengan jarak partikel ke-i ke titik asal, walaupun untuk sebuah cakram dengan titik asakbya di pusat sumbu, jarak-jarak ini adalah sama. Momen inersia adalah ukuran resistansi atau kelembaman sebuah benda terhadap perubahan dalam gerak rotasi. Momen inersia ini tergantung pada distribusi massa benda relatif terhadap sumbu rotasi benda. Momen inersia adalah sifat benda ( dan sumbu rotasi ), seperti massa m yang merupakan sifat benda yang mengukur kelembamannya terhadap perubahan dalam gerak translasi.
Untuk sistem yang terdiri dari sejumlah kecil partikel-partikel diskrit, dapat dihitung momen inersia terhadap sumbu tertentu langsung berdasarkan persamaan di atas. Untuk kasus benda kontinu yang lebih sederhana, seperti cincin momen inersia terhadap sumbu tertentu dapat dihitung dengan menggunakan kalkulus.(Tipler. 2001,267-268)
Dengan mengeluarkan faktor ω^2/2 dari persamaan, didapat :
Besaran di dalam kurung , di dapat dengan mengalikan massa masing-masing partikel dengan kuadrat jarakn ya dari sumbu putar dan menambahkan hasilnya, dinyatakan dengan I dan disebut sebagai momen inersia. Sehingga momen inersia dapat di nyatakan sebagai
(zemansky.1991, 293-294)
Dalam persamaan ini, jarak ri adalah jarak dari partikel ke-i ke sumbu rotasi. Biasanya, jarak ini tidak sama dengan jarak partikel ke-i ke titik asal, walaupun untuk sebuah cakram dengan titik asakbya di pusat sumbu, jarak-jarak ini adalah sama. Momen inersia adalah ukuran resistansi atau kelembaman sebuah benda terhadap perubahan dalam gerak rotasi. Momen inersia ini tergantung pada distribusi massa benda relatif terhadap sumbu rotasi benda. Momen inersia adalah sifat benda ( dan sumbu rotasi ), seperti massa m yang merupakan sifat benda yang mengukur kelembamannya terhadap perubahan dalam gerak translasi.
Untuk sistem yang terdiri dari sejumlah kecil partikel-partikel diskrit, dapat dihitung momen inersia terhadap sumbu tertentu langsung berdasarkan persamaan di atas. Untuk kasus benda kontinu yang lebih sederhana, seperti cincin momen inersia terhadap sumbu tertentu dapat dihitung dengan menggunakan kalkulus.(Tipler. 2001,267-268)
0 komentar:
Posting Komentar
Silahkan Isi Komentar Tulisan Ini. Terima Kasih