Benda tegar yang berotasi terdiri dari massa yang bergerak, sehingga memiliki energi kinetik. Hal ini dapat dinyatakan energi kinetik ini dalam bentuk kecepaian sudut benda dan sebuah besaran baru yang disehut momen inersia. Untuk mengembangkan hubungan ini, misalkan sebuah benda yang lerdiri dari sejumlah
besar partikel dengan massa m1, m2, m3,.....pada jarak r1,r2,r3.....dari sumbu putar. Apabila diberi nama masing-masing partikel dengan subskrip i, massa partikel ke-i adalah mi, dan jaraknya dari sumbu pular adalah ri. Partikel tidak harus seluruhnya berada pada satu bidang, sehingga dapat ditunjukkan bahwa rt adalah jarak tegak lurus dari sumbu terhadap partikel ke-i dinyatakan sebagai.
Ketika benda tegar berotasi di sekitar sebuah sumbu tetap, laju Vi dari partikel ke-i diberikan oleh Persamaan v, = ri ω, di mana ω adalah laju sudut benda. Setiap partikel memiliki nilai r yang bcrbeda. Tetapi ω yang sama untuk semua (kalau tidak. benda tidak akan tegar). Energi kinelik uniuk partikel ke-i dinyatakan sebagai
Dengan mengeluarkan faktor ω^2/2 dari persamaan, didapat :
Besaran di dalam kurung , di dapat dengan mengalikan massa masing-masing partikel dengan kuadrat jarakn ya dari sumbu putar dan menambahkan hasilnya, dinyatakan dengan I dan disebut sebagai momen inersia. Sehingga momen inersia dapat di nyatakan sebagai
(zemansky.1991, 293-294)
Dalam persamaan ini, jarak ri adalah jarak dari partikel ke-i ke sumbu rotasi. Biasanya, jarak ini tidak sama dengan jarak partikel ke-i ke titik asal, walaupun untuk sebuah cakram dengan titik asakbya di pusat sumbu, jarak-jarak ini adalah sama. Momen inersia adalah ukuran resistansi atau kelembaman sebuah benda terhadap perubahan dalam gerak rotasi. Momen inersia ini tergantung pada distribusi massa benda relatif terhadap sumbu rotasi benda. Momen inersia adalah sifat benda ( dan sumbu rotasi ), seperti massa m yang merupakan sifat benda yang mengukur kelembamannya terhadap perubahan dalam gerak translasi.
Untuk sistem yang terdiri dari sejumlah kecil partikel-partikel diskrit, dapat dihitung momen inersia terhadap sumbu tertentu langsung berdasarkan persamaan di atas. Untuk kasus benda kontinu yang lebih sederhana, seperti cincin momen inersia terhadap sumbu tertentu dapat dihitung dengan menggunakan kalkulus.(Tipler. 2001,267-268)